Invertebrate Colonization During Leaf Decomposition of Eichhornia azurea (Swartz) Kunth (Commelinales: Pontoderiaceae) and Salvinia auriculata Aubl. (Salvinales: Salvinaceae) in a Neotropical Lentic System

Authors

  • Lidimara Souza da Silveira Universidade Federal de Juiz de Fora
  • Renato Tavares Martins Instituto Nacional de Pesquisas da Amazônia
  • Roberto da Gama Alves Universidade Federal de Juiz de Fora

DOI:

https://doi.org/10.12741/ebrasilis.v9i1.548

Keywords:

Aquatic insects, Carbon, nitrogen ratio, Leaf breakdown, Macrophytes, Oligochaetes, Insetos aquáticos, Decomposição foliar, Macrófitas, Oligoquetas, Razão carbono, nitrogênio

Abstract

Abstract. The decomposition of macrophytes is an essential process for cycling of carbon and nutrients, and it is source of organic matter for invertebrates in lakes. We evaluated the colonization by aquatic invertebrates in decomposing leaves of two species of macrophytes in a Neotropical lentic system. The experiment was conducted from November 2007 to February 2008, with the use of 54 litter bags (Eichhornia azurea (Swartz): n = 27 and Salvinia auriculata Aubl.: n= 27), each containing 10 g of dry leaves. Three bags of each species were retrieved after 2, 4, 8, 12, 24, 36, 48, 60 and 72 days of incubation. The remaining leaf mass of the two macrophytes species tended to decrease with time, although at different rates. The decomposition of E. azurea and S. auriculata leaves were classified as rapid and intermediate, respectively. In general, during the experiment carbon: nitrogen ratio declined in E. azurea and increased in S. auriculata, and presented difference among the days of the experiment and between the macrophyte species. In E. azurea mass loss was negatively correlated with carbon: nitrogen ratio of the leaves, but the same pattern was not observed for the S. auriculata leaves. The composition and richness of invertebrates differed among days, but not between macrophytes species. We concluded that the succession process along the detritus chain was more important in structuring the invertebrate community than the variation in the nutritional quality of the leaf litter for these two species of macrophytes.

Colonização por Invertebrados Durante a Decomposição foliar de Eichhornia azurea (Swartz) Kunth (Commelinales: Pontoderiaceae) e Salvinia auriculata Aubl. (Salvinales: Salvinaceae) em um Sistema Lêntico Neotropical

Resumo. A decomposição de macrófitas é um processo essencial para ciclagem de carbono e nutrientes, e é fonte de matéria orgânica para invertebrados em lagos. Avaliamos a colonização por invertebrados aquáticos em folhas em decomposição de duas espécies de macrófitas em um sistema lêntico Neotropical. O experimento foi conduzido entre novembro de 2007 e fevereiro de 2008, com a utilização de 54 sacos de detrito (Eichhornia azurea (Swartz): n = 27 e Salvinia auriculata Aubl.: n = 27), cada um contendo 10 g de folhas secas. Três sacos de cada espécie foram recuperados após 2, 4, 8, 12, 24, 36, 48, 60 e 72 dias de incubação. A massa remanescente de folha das duas espécies de macrófitas tendeu a diminuir com o tempo, embora a velocidades diferentes. A decomposição de folhas de E. azurea e S. auriculata foram classificadas como rápida e intermédia, respectivamente. Em geral, durante o experimento a razão carbono: nitrogênio diminuiu em E. azurea e aumentou em S. auriculata, e apresentou diferença entre os dias de experimento e entre as espécies de macrófitas. Em E. azurea perda de massa foi negativamente correlacionada com a razão de carbono: nitrogênio das folhas, mas o mesmo padrão não foi observado para as folhas de S. auriculata. A composição e riqueza de invertebrados diferiram entre os dias, mas não entre espécies de macrófitas. Concluímos que o processo de sucessão ao longo da cadeia de detritos foi mais importante na estruturação da comunidade de invertebrados do que a variação na qualidade nutricional do detrito de folha para estas duas espécies de macrófitas.

References

Allen, S.E., H.M. Grimshaw, J.A. Parkinson & C. Quarby, 1974. Chemical analysis of ecological material. Oxford, Blackwell Scientifc Publications, 565 p.

Alves dos Santos, I., 1999. Poliniza

Azevedo, M.T.P., C.A. Souza, T. Rosado, V. Huszar & F. Roland, 2003. Limnothrix bicudoi, a new species of Cyanophyceae/ Cyanobacteria from Southeast of Brazil. Archiv f

http://dx.doi.org/10.1127/1864-1318/2003/0109-0093.

Barrett, S.C.H., 1978. Floral biology of Eichhornia azurea (Swartz) Kunth (Pontederiaceae). Aquatic Botany, 5: 217-228.

Begon, M., J.L. Harper & C.R. Towsend, 1995. Ecologia: indiv

Brinkhurst, R.O. & M. R. Marchese, 1989. Guia para la indenti?caci

Bruquetas de Zozaya, I.Y. & J.J. Neiff, 1991. Decomposition and colonization by invertebrates of Typha latifolia L. litter in Chaco cattail swamp (Argentina). Aquatic Botany, 40: 185-193. DOI: http://dx.doi.org/10.1016/0304-3770(91)90096-N.

Capello, S., M. Marchese & I. Ezcurra de Drago, 2004. Descomposici

Carvalho, A.L. & E.R. Calil, 2000. Chaves de identifica

Casas, J.J., M.O. Gessner, D. L

Chauvet, E., N. Giani & M.O. Gessner, 1993. Breakdown and invertebrate colonization of leaf litter in two contrasting streams: signi?cance of Oligochaetes in a large river. Canadian Journal of Fisheries and Aquatic Sciences, 50: 488-495. DOI: http://dx.doi.org/10.1139/f93-057.

Cheshire, K., L. Boyero & R.G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748

http://dx.doi.org/10.1111/j.1365-2427.2005.01355.x.

Chimney, M.J. & K.C. Pietro, 2006. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecological Engineering, 27: 301-321. DOI:

http://dx.doi.org/10.1016/j.ecoleng.2006.05.016.

Costa, C., S. Ide & C.E. Simonka, 2006. Insetos Imaturos: Metamorfose e Identifica

Dufr

http://dx.doi.org/10.2307/2963459.

Fern

Gessner, M.O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos, 85: 377-384. DOI: http://dx.doi.org/10.2307/3546505.

Gimenes, K.Z., M.B. Cunha-Santino & I. Bianchini Jr., 2010. Decomposi

Gon

Gon

Gon

http://dx.doi.org/10.1071/MF11172.

Gon

Gra

Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48: 123-134. DOI: http://dx.doi.org/ 10.1046/j.1365-2427.2003.00985.x.

Howard-Williams, C. & W.J. Junk, 1976. The decomposition of aquatic macrophytes in the floating meadows of a central Amazonian v

Lan, N.K., T. Asaeda & J. Manatunge, 2006. Decomposition of aboveground and belowground organs of wild rice (Zizania latifolia): mass loss and nutrient changes. Aquatic Ecology, 40: 13-21. DOI: http://dx.doi.org/10.1007/s10452-005-9020-4.

Li, X., B. Cui, Q. Yang, H. Tian, Y. Lan, T. Wang & Z. Han, 2012. Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China. Plos One, 7: e42042. DOI:

http://dx.doi.org/10.1371/journal.pone.0042042.

Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquatic Botany, 89: 303-310. DOI: http://dx.doi.org/10.1016/j.aquabot.2008.03.004.

Martins, R.T., L.S. Silveira & R.G. Alves, 2011. Colonization by oligochaetes (Annelida: Clitellata) in decomposing leaves of Eichhornia azurea (SW.) Kunth (Pontederiaceae) in a Neotropical lentic system. Annales de Limnologie - International Journal of Limnology, 47: 339-346. DOI: http://dx.doi.org/10.1051/limn/2011053.

Mathuriau, C. & E. Chauvet, 2002. Breakdown of litter in a Neotropical stream. Journal of the North American Benthological Society, 21: 384-396.

McCafferty, W.P., 1981. Aquatic Entomology. Boston, Jones and Bartlett Publishers, 448 p.

Merritt, R.W. & K.W. Cummins, 1984. An introduction to the Aquatic Insects of North America. Dubuque, Kendall /Hunt publishing Co, 2nd ed, 722 p.

Moretti, M.S., J.F. Gon

Mormul, R.P., L.A. Vieira, S. Pressinatte Jr., A. Monkolski & A.M. Santos, 2006. Sucess

Padial, A.A. & S.M. Thomaz, 2006. Effects of flooding regime upon the decomposition of Eichhornia azurea (SW.) Kunth measured on a tropical, flow-regulated floodplain (Paran

Pagioro, T.A. & S.M. Thomaz, 1998. Loss of weight and concentration of carbon nitrogen and phosphorus during decomposition of Eichhornia azurea in the ?oodplain of the upper Paran

Pagioro, T.A. & S.M. Thomaz, 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paran

Pes, A.M.O, N. Hamada & J.L. Nessimian, 2005. Chaves de identifica

Petersen, R.C. & K.W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology, 4: 343-368. DOI: http://dx.doi.org/10.1111/j.1365-2427.1974.tb00103.x.

Prado, J., 2006. Cript

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Avaiable: <http://www.R-project.org/> [Accessible in: 04.21.2014].

Ramseyer, U. & M. Marchese, 2009. Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Parana River. Limnetica, 28: 1-10.

Rejm

Rezende, R.S., J.F. Gon

Santos, M.G., L.S. Sylvestre & D.S.D. Araujo, 2004. An

Schenkov

Sciessere, L, M.B. Cunha-Santino & I. Bianchini Jr., 2011. Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon. Brazilian Journal of Microbiology, 42: 909-918. DOI:

http://dx.doi.org/10.1590/S1517-83822011000300009.

Silva, D.S., M.B. Cunha-Santino, E.E. Marques & I. Bianchini Jr., 2011. The decomposition of aquatic macrophytes: bioassays versus in situ experiments. Hydrobiologia, 665: 219-227. DOI: http://dx.doi.org/10.1007/s10750-011-0625-4.

Silveira, L.S., R.T. Martins, G.A. Silveira, R.M. Grazul, D.P. Lobo & R.G. Alves, 2013. Colonization by Chironomidae larvae in decomposition leaves of Eichhornia azurea in a lentic system in southeastern Brazil. Journal of Insect Science, 13: 1-13. DOI: http://dx.doi.org/10.1673/031.013.2001.

Smock, L.A & D.L. Stoneburner, 1980. The response of macroinvertebrate to aquatic macrophyte decomposition. Oikos, 35: 397-403. DOI: http://dx.doi.org/10.2307/3544656.

Suren, A.M. & P.L. Lake, 1989. Edibility of fresh and decomposing macrophytes to three species of freshwater invertebrates herbivores. Hydrobiologia, 178: 165-178. DOI: http://dx.doi.org/10.1007/BF00011667.

Takeda, A.M., G.J. Souza-Franco, S.M. Melo & A. Monkolski, 2003. Invertebrados associados

Wetzel, R.G. & G.E. Likens, 1991. Limnological analyses. New York, Springer-Verlag, 2nd ed., 391 p.

Wetzel, R.G., 2001. Limnology, Lake and River Ecosystems. San Diego, Academic Press, 3rd ed., 1006 p.

Downloads

Published

2016-04-29

How to Cite

[1]
da Silveira, L.S., Martins, R.T. and Alves, R. da G. 2016. Invertebrate Colonization During Leaf Decomposition of Eichhornia azurea (Swartz) Kunth (Commelinales: Pontoderiaceae) and Salvinia auriculata Aubl. (Salvinales: Salvinaceae) in a Neotropical Lentic System. EntomoBrasilis. 9, 1 (Apr. 2016), 10–17. DOI:https://doi.org/10.12741/ebrasilis.v9i1.548.

Issue

Section

Ecology

Most read articles by the same author(s)