Influence of abiotic factors on the resistance of plants to insects

Authors

  • Ciro Pedro Guidotti Pinto Universidade Estadual Paulista - Faculdade de Ciências Agrárias e Veterinárias (Campus de Jaboticabal)
  • Sabrina Ongaratto Universidade Estadual Paulista - Faculdade de Ciências Agronômicas (Campus de Botucatu-SP)

DOI:

https://doi.org/10.12741/ebrasilis.v12i1.839

Keywords:

Interaction, Mechanisms, Population dynamics, Dinâmica populacional, Interação, Mecanismos

Abstract

Abstract. Plant resistance is considered as an important pillar of Integrated Pest Management (IPM), being a highly targeted method since is a less harmful method to the environment, if compared to other tactics such as chemical control. Abiotic factors are those related to the environment and have a direct influence on the dynamics of interaction between insects and plants. The abiotic factors such as altitude, temperature, humidity, luminosity, wind and soil fertility, among others, do not act alone, but in a complex net that leads insect population dynamics in agroecosystems. How the variations of these factors can be studied in the same context? First, it is important to consider how each abiotic factors act separately and then in a coexistence influence over the populations dynamics of insects and plants. In this study, the literature about the influence of abiotic factors on insect herbivory has been reviewed, focusing mainly on the mechanisms in which the plants use in the defense against insects.

Influência de fatores abióticos na resistência de plantas a insetos

Resumo. A resistência de plantas é considerada um importante pilar no contexto do Manejo Integrado de Pragas (MIP), sendo um método bastante visado por ser menos nocivo ao meio ambiente, quando comparado a outras táticas como o controle químico. Os fatores abióticos são aqueles relacionados ao ambiente e têm influência direta na dinâmica de interação entre insetos e plantas. Os fatores abióticos como altitude, temperatura, umidade, luminosidade, ventos e fertilidade do solo, por exemplo, não atuam sozinhos, mais sim em um complexo de fatores coexistentes que regem as dinâmicas populacionais nos diversos agroecosistemas. Como as variações destes fatores podem ser estudadas em um mesmo contexto? Primeiramente, é importante conhecer como cada uma atua individualmente para então contextualizar em uma situação de coexistência sobre as dinâmicas populacionais de insetos e plantas. Neste artigo, a literatura sobre a influência de fatores abióticos na herbivoria de insetos foi revisada, focando principalmente nos mecanismos em que as plantas utilizam na defesa contra insetos.

References

Agrawal, A.A., 2002. Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance. Ecology, 83: 3408-3415. DOI: https://doi.org/10.1890/0012-9658(2002)083[3408:HAMEMA]2.0.CO;2.

Agrawal, A.A., 2001.Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect? The American Naturalist, 157: 555-569. DOI: https://doi.org/10.1086/319932.

Ayres, M.P. & M.J. Lombardero, 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262: 263-286. DOI: https://doi.org/10.1016/S0048-9697(00)00528-3.

Bakhat, H.F., N. Bibi, Z. Zia, S. Abbas, H.M. Hammad, S. Fahad, M.R. Ashrafc, G.M. Shaha, F. Rabbani & S. Saeed, 2018. Silicon mitigates biotic stresses in crop plants: a review. Crop Protection, 104: 21-34. DOI: https://doi.org/10.1016/j.cropro.2017.10.008.

Bale, J.S., G.J. Masters, I.D. Hodkinson, C. Awmack, T.M. Bezemer, V.K. Brown, J. Butterfield, A. Buse, J.C. Coulson, J. Farrar, J.E.G. Good, R. Harrington, S. Hartley, T.H. Jones, R.L Lindroth, M.C. Press, I. Symrnioudis, A.D. Watt & J.B. Whittaker, 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1-16. DOI: https://doi.org/10.1046/j.1365-2486.2002.00451.x.

Boi

Boi

Bosu, P.P. & M.R. Wagner, 2014. Effects of induced water stress on leaf trichome density and foliar nutrients of three elm (Ulmus) species: implications for resistance to the elm leaf beetle. Environmental entomology, 36: 595-601. DOI: https://doi.org/10.1603/0046-225X(2007)36[595:EOIWSO]2.0.CO;2.

Boyko, A., T. Blevins, Y. Yao, A. Golubov, A. Bilichak, Y. Ilnytskyy, J. Hollander F. Meins Jr & I. Kovalchuk, 2010. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One, 5: 1-12. DOI: https://doi.org/10.1371/journal.pone.0009514.

Carmona, D., M.J. Lajeunesse & M.T.J. Johnson, 2011. Plant traits that predict resistance to herbivores. Functional Ecology, 25: 358-367. DOI: https://doi.org/10.1111/j.1365-2435.2010.01794.x.

Chen, C., A. Biere, R. Gols, W. Halfwerk, K. Van Oers & J.A. Harvey, 2018. Responses of insect herbivores and their food plants to wind exposure and the importance of predation risk. The Journal of Animal Ecology, 1-12. DOI: https://doi.org/10.1111/1365-2656.12835.

Cipollini, D.F. & A.M. Redman, 1999. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. Journal of Chemical Ecology, 25: 271-281. DOI: https://doi.org/10.1023/A:1020842712349.

Clemensen, A.K., F.D. Provenza, S.T. Lee, D.R. Gardner, G.E. Rottinghaus & J.J. Villalba, 2017. Plant secondary metabolites in alfalfa, birdsfoot trefoil, reed canarygrass, and tall fescue unaffected by two different nitrogen sources. Crop Science, 57: 964-970. DOI: https://doi.org/10.2135/cropsci2016.08.0680.

Coley, P.D. & J.A. Barone, 1996. Herbivory and Plant Defenses in Tropical Forests. Annual Review of Ecology and Systematics, 27: 305-335. DOI: https://doi.org/10.1146/annurev.ecolsys.27.1.305.

De Lucia, E., P. Nabity, J. Zavala & M. Berenbaum, 2012. Climate Change: Resetting Plant-Insect Interactions. Plant Physiology, 160: 1677-1685. DOI: https://doi.org/10.1104/pp.112.204750.

Dicke, M. & I.T. Baldwin, 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the

Epstein, E., 2001. Silicon in plants: facts vs. concepts, p. 1-15. In: Datnoff, L.E., G.H. Snyder & G.H. Kornd

Erb, M., V. Flors, D. Karlen, E. De Lange, C. Planchamp, M. D

Fischer, K. & K. Fiedler, 2000. Reponse of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia, 124: 235-241. DOI: https://doi.org/10.1007/s004420000365.

Flynn, D.F.B., E.A. Sudderth & F.A. Bazzaz, 2006. Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environmental and Experimental Botany, 56: 10-18. DOI: https://doi.org/10.1016/j.envexpbot.2004.12.001.

Gols, R. & J.A. Harvey, 2009. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochemistry Reviews, 8:187-206. DOI: https://doi.org/10.1007/s11101-008-9104-6.

Gomes, F.B., J.C.D. Moraes, C.D.D. Santos & M.M. Goussain, 2005. Resistance induction in wheat plants by silicon and aphids. Scientia Agricola, 62: 547-551. DOI: http://dx.doi.org/10.1590/S0103-90162005000600006.

Gomes, F.B., J.C. Moraes & D.K.P. Neri, 2009. Aduba

Gouinguen

Goussain, M.M., J.C. Moraes, J.G. Carvalho, N.L. Nogueira & M.L. Rossi, 2002. Effect of silicon application on corn plants upon the biological development of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology, 31: 305-310. DOI: http://dx.doi.org/10.1590/S1519-566X2002000200019.

Gupta, S.D. & A. Agarwal, 2017. Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment, p. 1-25. In: S.D. Gupta (Ed.). Light Emitting Diodes for Agriculture. Singapore, Springer, 334 p.

Hare, J.D., 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annual Review of Entomology, 56: 161-180. DOI: https://doi.org/10.1146/annurev-ento-120709-144753.

Hodkinson, I.D., 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews, 80: 489-513. DOI: https://doi.org/10.1017/S1464793105006767.

Holeski, L.M., Jander, G. & A.A. Agrawal, 2012. Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology & Evolution, 27: 618-626. DOI: https://doi.org/10.1016/j.tree.2012.07.011.

Huberty, A.F. & R.F. Denno, 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85: 1383-1398. DOI: https://www.jstor.org/stable/3450179.

Jamieson, M.A., A.M. Trowbridge, K.F. Raffa & R.L. Lindroth, 2012. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiology, 160: 1719-1727. DOI: https://doi.org/10.1104/pp.112.206524.

Johnson, S.N. & T. Z

Koricheva, J., H. Nyk

Mody, K., D. Eichenberger & S. Dorn, 2009. Stress magnitude matters: different intensities of pulsed water stress produce non?monotonic resistance responses of host plants to insect herbivores. Ecological Entomology, 34: 133-143. DOI: https://doi.org/10.1111/j.1365-2311.2008.01053.x.

Muday, G.K. & H. Brown-Harding, 2018. Nervous system-like signaling in plant defense. Science, 361: 1068-1069. DOI: https://doi.org/10.1126/science.aau9813.

Nguyen, D., N. D'Agostino, T.O. Tytgat, P. Sun, T. Lortzing, E.J. Visser, S.M. Cristescu, A. Steppuhn, C. Mariani, N.M. Van Dam & I. Rieu, 2016. Drought and flooding have distinct effects on herbivore induced responses and resistance in Solanum dulcamara. Plant, Cell & Environment, 39: 1485-1499. DOI: https://doi.org/10.1111/pce.12708.

Pellissier, L., K. Fiedler, C. Ndribe, A. Dubuis, J.N. Pradervand, A. Guisan & S. Rasmann, 2012. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2: 1818-1825. DOI: https://doi.org/10.1002/ece3.296.

Pellissier, L., A. Roger, J. Bilat & S. Rasmann, 2014. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography, 37: 950-959. DOI: https://doi.org/10.1111/ecog.00833.

Pinto, M.S.T., J.M. Ribeiro & E.A.G. Oliveira, 2011. O estudo de genes e prote

Poelman, E.H., 2015. From induced resistance to defence in plant insect interactions. Entomologia Experimentalis et Applicata, 157: 11-17. DOI: https://doi.org/10.1111/eea.12334.

Rasmann, S., N. Alvarez & L. Pellissier, 2014. The altitudinal niche-breadth hypothesis in insect-plant interactions, p. 339-359. In: Voelckel C. & G. Jander (Eds.). Annual Plant Reviews: Insect-Plant Interactions, 47: 420 p. DOI: https://doi.org/10.1002/9781118829783.ch10.

Rasmann, S., L. Pellissier, E. Defossez, H. Jactel & G. Kunstler, 2014. Climate-driven change in plant-insect interactions along elevation gradients. Functional Ecology, 28: 46-54. DOI: https://doi.org/10.1111/1365-2435.12135.

Reynolds, O.L., M.P. Padula, R. Zeng & G.M. Gurr, 2016. Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science, 7: 744. DOI: https://dx.doi.org/10.3389%2Ffpls.2016.00744.

Rosenblatt, A.E. & O.J. Schmitz, 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends in Ecology & Evolution, 31: 965-975. DOI: https://doi.org/10.1016/j.tree.2016.09.009.

S

Sharma, H.C., A.R. War, M. Pathania, S.P. Sharma, S.M. Akbar & R.S. Munghate, 2016. Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthropod-Plant Interactions, 10: 171-181. DOI: https://doi.org/10.1007/s11829-016-9422-3.

Souza, B.H.S., 2014. Fatores e mecanismos que influenciam a resist

Toyota, M., D. Spencer, S. Sawai-Toyota, W. Jiaqi, T. Zhang, A.J Koo, G.A. Howe & S. Gilroy, 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 361: 1112-1115. DOI: https://doi.org/10.1126/science.aat7744.

Vargas-Ortiz, E., E. Espitia-Rangel, A. Tiessen & J.P. D

Veromann, E., M. Toome, A. K

Villegas, J.M., M.O. Way, R.A. Pearson & M.J. Stout, 2017. Integrating soil silicon amendment into management programs for insect pests of drill-seeded rice. Plants, 6: 33. https://doi.org/10.3390/plants6030033.

War, A.R., M.G. Paulraj, T. Ahmad, A.A. Buhroo, B. Hussain, S. Ignacimuthu & H.C. Sharma, 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7: 1306-1320. DOI: https://doi.org/10.4161/psb.21663.

Waring, G.L. & N.S. Cobb, 1992. The impact of plant stress on herbivore population dynamics, p. 167-226. In: E.A. Bernays (Ed.). Insect-plant interactions. Fl

Watt, T.J., J.J. Duan, D.W. Tallamy, J. Hough-Goldstein, T.W. Ilvento, X. Yue & H. Ren, 2016. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature. Biological Control, 96: 1-7. DOI: https://doi.org/10.1016/j.biocontrol.2016.01.011.

White, T.C.R., 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology, 50: 905-909. DOI: https://www.jstor.org/stable/1933707.

Downloads

Published

2019-04-30

How to Cite

[1]
Pinto, C.P.G. and Ongaratto, S. 2019. Influence of abiotic factors on the resistance of plants to insects. EntomoBrasilis. 12, 1 (Apr. 2019), 01–05. DOI:https://doi.org/10.12741/ebrasilis.v12i1.839.

Issue

Section

Review